
1

(Trailer)

Today, I would like to talk about the art style of our latest title GuiltyGear Xrd.

Why did we choose this art style? What made it so hard to fake 2d in 3d?

How did we accomplish it? What made the difference?

We only have a limited time frame, and I won’t be able to cover each and every aspect of it,

So it will mostly consist on the 3D Character Art and the Animation.

2

First, let me do a super fast introduction,

3

I am Junya Christopher Motomura, a Technical Artist and Character Modeler working at
ArcSystemWorks.

I’ve been Working at the company for 13 years, mostly as a 3D artist, but in many other
positions, such as game designer, game director , story script, localization, voice acting, and
even some singing.

My role in GuiltyGearXrd were

Lead Character modeler , Character look development, including Writing Shaders , Rigging,

and other bits n pieces

So, basically I’m the guy behind how the 3D characters look on the screen.

4

GuiltyGearXrd is the latest installment of the GuiltyGear franchise, a long running series of
2D fighting games.

Previously, most games in the series used 2D sprite based graphics.

This title is a reboot from a long time halt on the series, and has some drastic change in art
style.

We chose to do it in 3D, instead of 2D sprites, while maintaining the charm the sprites had.

This was a great leap of faith, and we are thankful it paid out.

(Game Play Video)

5

In GuiltygearXrd, our goal was to keep the look and feel of the old titles, and represent them
in a new form, 3D.

The visual’s needed to resemble those of the sprites we have used for so many years, and
look even better with higher resolution in mind.

Although it utilizes 3D a lot, the game it self is still played in a 2D plane, being true to it’s
nature.

As you may see, the art style is strictly based on Japanese Anime, which is also a tradition
brought over from the 2D sprites back in the days.

This was done by combining custom Cel-shaders and 3D models made especially for those
shaders.

Turning 3D, meant that we were no longer limited by resolution.

The screen is now 1080p for PS4, 720p for PS3, so that was a great boost in resolution from
the old 480p sprites.

6

The shift to 3D graphics gave us much more benefit than just higher resolution.

It’s the freedom we achieved on the camera.

The Cel-shaded 3D graphics work well in the battle screen, but the real shine is when the
camera swings.

Being able to move the camera at will, dynamic camera angles are now viable in the game.

For special attacks and finish scenes, the camera moves around the 3D space and shows the
action from a more dramatic perspective.

7

So we got a new art style, but where did the idea come from?

Why did we chose this path?

Why didn’t we stick to 2D sprites?

Well, there is a simple answer..

8

We already had Blazblue.

BlazBlue is our other 2D fighting game franchise that utilizes high res sprites.

And it does it so well, we didn't see much room for improvement.

We didn’t want to compete with our selves, so for GuiltyGearXrd, we needed something
different"

9

And that’s when we decided to use Cel-shaded 3D.

Well, We considered many other options such as vector art, ultra high res sprites, and others.

But what emerged most promising was Cel-shaded 3D, which I , at that time, happened to
be experimenting with.

This here is a piece from a canceled project that I was working on.

The project didn’t work out, but the art style showed a lot of potential.

So when GuiltyGearXrd finally started to take form, we decided to take this art style even
further.

If done right , we could maintain our ‘Anime’ style while gaining the various benefits of 3D.

Dynamic camera angles and Animated Cut scene were things we were craving for back in
the days

We also found potential in it, because the technique was not well explored, and had lots of
room for improvement.

By advancing the state of the art, there was a great chance to stand out in a crowded
market.

10

So we decided which way to go, now we needed to actually start moving.

Lets have a look at how we faced the challenge.

11

Getting 3D to look like 2D was going to be a tough challenge, and we knew it.

It was seldom accomplished, so we had to find our own way, and pave our own path.

A lot of study went in to both the 2Dart and 3Dtechnology.

Because knowing both sides was essential to tackle this task.

Elements that were not translated well enough from 2D to 3D were picked out, and solved
one by one.

We broke a lot of conventions on the way, because they just didn’t Suit this style

As a result, we came up with a new unique workflow, mostly built from scratch

12

At the same time,

we introduced our selves to new tools in order to face this huge challenge.

First, Unreal engine 3.

We considered multiple engines, and Unreal Engine 3 was chosen because of multiple
reasons.

We needed a new engine that could handle multiple platforms,

Our deadline was strict, and building an engine from scratch was not an option.

We had a team mostly consisting of artists, and the artist friendly design of Unreal3 matched
our needs.

The fact that Unreal4 was on it’s way, and Unreal3 was around the end of it’s lifecycle,
also benefitted us.

The engine was well debugged and stable, and we had a lot of freedom customizing it with
the full source code.

The other tool that helped us a lot was Autodesk Softimage.

The flexibility in modeling and animation let us focus on quality.

A built in shader editor made possible to experiment with the Cel-shading a lot.

Because of it’s non destructive workflow, we were able to improve our assets continually
throughout the whole production, right till the last minute.

With out this tool, I believe it just wouldn’t have happened.

13

Now, lets dive in to the details of “How” we did it.

Starting with the look of the characters

14

The most important assets of our game were the characters.

Without getting them right, there was no way we were going to get the game right.

First, the characters needed to represent their 2D design well enough to appeal to the
audience.

The models had to be as good as the designs, or even better.

And they had to look 2D as much as possible.

To do this, our principle was simple.

Kill everything 3D. If you find something that looks 3D, you just have to find a way to avoid
it.

This often boiled down to hand crafting by the artists,

Because while the math within the shader is always “correct”, “correct” is just not good
enough.

To get a convincing 2D look, every thing on screen has to be an intentional choice, not just a
result of a calculation.

To achieve all of this, instant feed back was key.

We were fortunate to have a real time shader preview on our modeling software,

that gave us a trust worthy representation of the actual game.

(LIVE DEMO)

15

The models have a fairly high poly count, around 40000 triangles in average.

We knew we were going to do extra close-ups in cut scenes, so the models had to hold up
even at an extremely close distance.

Details were directly modeled-in with geometry.

What may be special about the character models in GGXrd, are that they are very texture
independent.

For example, unlike average 3D games, we do not use textures such as normal maps for our
characters.

Instead, we use vertex properties such as Vertex Normals, Vertex Colors, and UV coordinates
a lot to store data in.

The reason for this is, again, the extra close-ups.

 The problems with texture data is that they are very resolution dependent.

Pixel data easily can get jaggy at super close-ups, and that can not be helped unless you
have a ultra high resolution.

On the other hand, vertex properties are linearly interpolated between vertices, which is
completely resolution independent.

16

Now, let’s go in to the actual shading.

In Cel-shading, the surface is either lit, or not, and no value in between.

This is one of the reasons Cel-shading is so hard to get right.

In a drawing, the artist will choose the most convincing distribution of light and darkness.

But in a shader, it’s all math, where unforgiving thresholds, mercilessly splits between light
and dark.

In Cel-shading, every little noise on the surface will become extremely distracting.

The slightest difference in the surface normal may end up as a huge blotch .

A convincing 2D look can only be achieved with precise control over the distribution of
shades.

17

The code for our Cel-shader is actually pretty simple.

In the main part of the calculation, a generic “step” function is used to decide if that pixel is
lit or not.

To put it simple for artists, this code works like this.

If the surface normal is facing the light source, it’s lit.

If it’s facing more than 90 degrees away from the light source, it’s not.

90 degrees, is the threshold here, but it could be any other value.

What matters here are the following.

The Threshold, the Light Vector, and the Normal Vector.

And that’s all. Only these 3 components matter in THIS shading code,

So what we have to do is simple.

Take full Control over those three.

18

First lets look at the Threshold.

We used a channel from the Vertex Colors as an offset on the Threshold.

This made it possible for the artist to make certain areas on the mesh get darker more easily.

This could be used to represent the occlusion of that vertex.

Areas more occluded from the light, have a less chance to be lit.

The artist will go around the mesh setting values, defining the areas more likely to be
shaded.

The artist may even set the value to Zero, making the area always shaded no matter what.

We used texture data in the same way in places,

but Vertex colors served us better in many cases.

Again, texture is dependent on resolution, but Vertex Properties are not.

The linear interpolation between vertices gave us a very clean result with out any pixelation.

Adding to that, it was much easier to adjust with Vertex colors, because you get instant
feedback from the preview, even while fiddling with the values

19

Next, to Lighting.

Unlike normal 3D games, GGxrd does not have a global lighting system affecting the
characters.

Each character has his or her own dedicated light vector that lights their idle pose in the best
way.

This lighting doesn’t change frame by frame in the battle scene, but in cut scenes, it
animated along with the character to get the best result each and every frame.

20

And finally the Normals.

Surface normals are one of the main reasons Cel-shading is so hard to get right.

The smallest inconsistency in normals result in a super evident artifact under Cel-shading.

The problem with normals are that they are automatically calculated. And the result of this
calculation, is often not what the Artist intended. On the other hand, shading in 2Dart is
very intentional.

To close this gap, there was only one thing we had to do. Control the Normals with intention.
Fortunately, Softimage had powerful tools built in, for this purpose.

Although editing normals is nothing new to game graphics, we took it even further, To get rid
of unintentional shading, we modified the normals on every major feature of the model. The
faces of the Characters especially needed to be hand crafted to get a clean anime look.

(LIVE DEMO)

21

Now, we sorted the lighting out, we have to think what color to paint the Lit and Shaded
areas.

Color selection in anime is vital. Every color is carefully chosen to express not just the
material, but the character it self. It is not as simple as just multiplying the shaded area with
an ambient color.

The coloring style in Anime can vary from title to title, but one thing is in common. This too,
is very intentional.

The combination of the lit and shaded colors can express a vast amount of characteristics.
Not just the material , but the atmosphere the character wields.

It's art in it's own sense, and is a task , usually given to a professional color designer.

To get the Anime look right in 3D, we took this by heart , and worked on a way to replicate
this process.

22

By studying anime art style extensively, we found that the shaded color often expresses how
solid that material is.

A less solid material will pass more light through it , getting a lighter color for the shades.

The light passing through the material will get Tinted depending on the materials
composition.

For example, shades on human skin get a red tint because of the flesh under it.

In order to implement this in the shader, we used two textures. The base texture defines the
color of the surface when it’s lit.

While the Tint texture defines how dark it gets when shaded. Multiplying the two textures, we
get the shaded color.

This way, the choice of color is completely up to the artist. The artist can choose what ever
color he or she may see fit, for the lit area and the shaded area of that material.

On a side note.

As you can see, both of these textures are just square areas consisting of single colors.

This is because we simply use them as color lookups, and do not draw-in any details to the
textures as images.

As stated before, most meaningful information is stored in the mesh it self, rather than in
textures.

23

Along with colors and shading, Lines play a huge role in cel-shading.

In fact, if you think in black and white manga style, the lines would be the most important
aspect of the visual.

In GGXrd, we use a traditional “Inverted Hull” method as outlines for the characters.

A second set of darker polygons are generated in the shader and are expanded in the
normals direction to create the hull which shapes the outline.

We added some new tricks to this long established method to achieve even more control over
the results.

It’s common these days to use a post effect for the outlines, but we found THIS method
suited our needs better.

First of all, we could preview the result right in the modeling viewport, letting us know exactly
how it’s going to look in game, we had more control over the lines, through the vertex
shader, giving precise control over the whole model.

With this , we were able give the outline variable widths in places we saw fit, even erasing it
completely at times.

Again, Vertex color was used a lot to control these lines properties.

24

We got our outline solved, but there is another set of lines that need to be discussed.

The inner lines, or the lines on the surface.

We needed a different approach for the inner lines, because the “Inverted hull” method used
for the outlines do not work for these kinds of lines.

These lines play a huge role in 2D art, conducting where one surface ends and another starts.

In order to get a 2D look, we just needed to find a way to get this right.

The easiest way would’ve been to simply draw the lines on the texture, but we knew there
was a major limitation to this.

The challenge here was , again , resolution.

We needed the characters to be able to hold up at extra close-ups with out any jaggies or
pixelation to be found. To avoid pixelation, you would need an infinitely high resolution for
the textures, which is simply impractical.

So we had to find a better way.

We came up with a technique using special UV assignments, to get jaggie free super clean
lines even at close-ups.

Here is how the technique goes.

All the lines are drawn as Axis Aligned beams on the texture, and the UV is lined up alongside
them.

How much the UV overlaps these beams, defines how thick that line becomes.

As long as the pixels are Aligned to an Axis they don’t get any jaggie, so we figured we
could use that to our advantage.

The down side is that you get a very distorted UV for the surface, but that was not a problem
for us because we do not put any details on the texture.

(LIVE DEMO)

25

With that, we have a pretty good model with many features representing a 2D feel.

Now Lets move on to animation.

26

Animation is where the merits of the models and the shaders truly come to play.

As with the models and the shaders, our goal was to make it look as 2D as possible.

To do this, we took a style called “Limited Animation”

This is a term often used in the Japanese Animation industry, in comparison with “Full
Animation”

Unlike western animations such a Disney, it focuses more on tricking the eyes with less
frames .

This was the way the old Guilty Gear titles were animated, and to replicate that, we decided
to use the same principle, but this time in 3D.

We did try the “full animation” path in early development, but it simply didn’t convey the
sense that it was 2D.

Having the poses interpolate between key frames, makes it look smoother, but at the same
time, makes it look more 3D.

So we just stopped using interpolations between key frames.

Every frame now is a key frame, and the animator poses the character in the best way
possible.

You could Imagine “Stop Motion” animations, where dolls are posed each frame. Basically,
that is exactly what we are doing.

This looked more true to our old sprites, and also made the cut scenes look way more “2D-
ish”.

27

In order to use limited animation as our style, we needed to build a rig to match this method.

Because we were going to have less frames per animation, we knew we had to add more
information to each frame.

This was done by having a LOT of bones so the animator can move every feature of the
model at a frame by frame basis.

The bone count is around 500 per character in average.

No simulation was used, because again, it just doesn’t look 2D. There is just no way to
capture the anime style movement with simulation.

SCALE animation was used a LOT, because it let us do many sorts of tricks.

Exaggerations of actions, let things hide or appear, traditional squash and stretch, and
more

We knew we needed it, but the engine didn’t support it, so we had to implement the scaling
system by ourselves.

It was difficult task, but thanks to our talented programmers, it was done.

And it was totally worth it.

28

Turning off interpolation between key frames is essential, but that alone, is not enough.

You need another trick to mimic 2D animation.

The secret, is to deform the mesh every key frame, to add Imperfection.

The human eyes and brains are very sensitive when it comes to perspectives.

If a part of a 3D model, moves through the perspective perfectly maintaining it’s shape, the
human brain instantly recognizes it as a rigid 3D object.

To avoid this, adding imperfection was the only way.

Nature is imperfect, the artist is imperfect, therefor perfection looks ‘too artificial’.

(LIVE DEMO)

Every key frame, Every bone on screen is adjusted by the animator to break the perfect
transition.

This makes each key frame more distinctive, adding even more information to a single frame.

“You need to think in 2D” is a word used a lot while animating in our team.

3D accuracy is not a priority in this workflow,

We often sacrifice it in order to get a more dynamic composition.

Limbs, hands, and feet get a lot of scale animation to exaggerate the perspective, and facial
parts do not maintain natural positions.

This is exactly the same as 2D animation.

Expressiveness over accuracy.

 And what we did was simply bring the same principle to 3D

29

30

What made the difference?

In my opinion, it was figuring out this one thing.

The X factor is the Artist’s Intention.

All the techniques we used are actually nothing new.

No new hardware or software innovation was involved.

Technically, the art style could have been done Years ago.

What made the difference, was the notion that the Artist’s Intention was the X factor.

A workflow, which let the Artist’s intention carry through, Right to the Final Result, was the
core of our accomplishment.

31

But Why was it us, and not any one else?

One simple answer, would be that we were lucky.

Thinking about it now, we were in a very fortunate situation to get this done.

We were a 2D oriented studio that had a lot of 2D experience, many artists who knew 2D
inside out.

We were not new to 3D, but not heavily invested in photo-realism either.

We were in a need for a new art style, to differentiate from the best of our own, BlazBlue.

The project was a reboot of a very well established game, so we knew exactly what we were
working on.

And the team. It was the dream team.

We had exactly the right people with the exact skillset needed for this challenge.

Off course, fortune wasn’t all.

The dedication and the hard work of the people involved in the project, and the strong
support from our fan base was what made all this possible.

32

Now to wrap up, here is my final proposition.

I want to see more studios explore Non Photo-realistic Rendering.

I feel that not enough research has been put into this area, and there is much more room to
explore and improve.

Photo realism is great, but it is not the only route, and it’s a crowded one too.

If you Look in different directions, there is a whole new horizon.

You, could be the pioneer that gets there first.

The frontier is there waiting to be discovered.

Thank you.

33

34

